Feng Group
Reproductive Epigenetics and Cell Biology
Epigenetics is the study of heritable changes in phenotypes, without changes in the underlying genetic code. Understanding germlines, the cells that contain the genetic information that is passed down from one generation to the next, is essential for understanding epigenetics because these cells mediate inheritance and undergo large-scale epigenetic changes.
Compared to animals, plant germlines differentiate much later and undergo distinct epigenetic changes despite highly conserved epigenetic pathways. These differences make plant germlines invaluable for revealing the core principles of epigenetics and sexual reproduction. Plant germlines are also of enormous practical significance because they produce the seeds that comprise most of our staple food.
Using plant germlines as models, the Feng group has pioneered cutting-edge techniques to study epigenetic regulation, focusing on DNA modifications, histone modifications and variants, non-coding RNAs, and chromosomal architecture. By combining these methods with advanced approaches such as super-resolution imaging and molecular genetics, we address three interconnected biological questions in germline epigenetics:
How do chromatin landscapes change during germline development and what are the underlying mechanisms?
What are the biological functions of these epigenetic reprogramming events?
How are environment-induced epigenetic memories transmitted and/or erased?
Through addressing these questions, we hope to provide deep insights into epigenetic mechanisms and germline functions, and reveal core principles governing epigenetic regulation of sexual reproduction in eukaryotes.
Team
Current Projects
DNA methylation reprogramming in land plants | Chromatin configuration in plant germlines | Epigenetic inheritance and resetting across generations | Mechanisms underlying thermal sensitivity of male reproduction
Recent Publications
Buttress T, He S, Wang L, Zhou S, Sun L, Saalbach G, Vickers M, Li P, Feng X. (2022) Histone H2B.8 compacts flowering plant sperm through chromatin phase separation. Nature 2022.11.02. 10.1038/s41586-022-05386-6
Long J, Walker J, She W, Aldridge B, Gao H, Deans S, Vickers M, Feng X. (2021) Nurse cell-derived small RNAs define paternal epigenetic inheritance in Arabidopsis. Science 373:6550. 10.1126/science.abh0556
Walker J, Gao H, Zhang J, Aldridge B, Vickers M, Higgins JD, Feng X. (2018) Sexual lineage specific DNA methylation regulates Arabidopsis meiosis. Nature Genetics 50: 130-137
10.1038/s41588-017-0008-5
ReX-Link: Xiaoqi Feng
Career
Since 2023 Assistant Professor (fast track to professor), ISTA
2020 – 2022 Group Leader, Scale 3, John Innes Centre, Norwich, UK
2019 – 2020 Group Leader, Scale 4, tenured, John Innes Centre, Norwich, UK
2014 – 2019 Group Leader, Scale 4, tenure-track, John Innes Centre, Norwich, UK
2011 – 2014 Postdoctoral Fellow, University of California, Berkeley, USA
2010 PhD, University of Oxford, UK