Skip to main content

Goodrich Group

Theoretical and Computational Soft Matter

How can materials dynamically control or remodel their own internal structure to affect their behavior? How can the statistics of structural disorder be biased to produce non-trivial properties? How can one discover novel equilibrium and non-equilibrium assembly mechanisms in highly parameterized systems? Questions like these are a necessary step in the development of synthetic biology, where non-biological materials and nano-scale machines operate with the complexity and functionality found only in biology.

Towards this end, the Goodrich Group uses computational and theoretical tools to discover basic soft matter principles that could one day lead to new functional materials as well as deepen our understanding of complex biological matter. The goal is to first understand general or even universal mechanisms that are not overly sensitive to the details of a given experimental system, and then work with experimentalists to test these ideas in practice. The group deploys and develops a number of numerical techniques, from molecular dynamics and Monte Carlo to machine learning and automatic differentiation. Specifically, the researchers are at the forefront in the development of trainable physics models, which provide a new and powerful way to explore high-dimensional systems and discover complex, non-trivial phenomena.


Current Projects

Self-assembly of disordered materials | Kinetic/functional assembly | Hierarchical self-assembly | Differentiable physics models

Open Positions

The Goodrich Group currently has a opening for a postdoc position.

Interested candidates can apply by sending a short email to (with in CC), with a CV that includes publications and contact information for at least 3 references. Applications received before March 14, 2021 will received full consideration. Women and those from underrepresented groups are especially encouraged to apply. 

More information about the group an their research can be found on their website.


Curatolo AI, Kimchi O, Goodrich CP, Krueger RK, Brenner MP. 2023. A computational toolbox for the assembly yield of complex and heterogeneous structures. Nature Communications. 14, 8328. View

Goodrich CP, King EM, Schoenholz SS, Cubuk ED, Brenner MP. 2021. Designing self-assembling kinetics with differentiable statistical physics models. Proceedings of the National Academy of Sciences. 118(10), e2024083118. View

View All Publications

ReX-Link: Carl Goodrich


Since September 2020 Assistant Professor, Institute of Science and Technology Austria (ISTA)
2015-2020 Postdoctoral Scholar at Harvard University, Cambridge, MA USA
2009-2015 Ph.D. in physics at the University of Pennsylvania, Philadelphia, PA USA
2005-2009 B.S. in physics at Syracuse University, Syracuse, NY USA

Additional Information

Download CV
Goodrich Group website
Physics & Beyond at ISTA

theme sidebar-arrow-up
Back to Top