Edelsbrunner Group
Algorithmen, algorithmische Geometrie und Topologie
Die Welt in Bezug auf Muster und Beziehungen zu verstehen ist der Grundgedanke der algorithmischen Geometrie und Topologie, dem Forschungsgebiet der Edelsbrunner Gruppe.
Während die Geometrie Formen misst, beschäftigt sich die Topologie damit, wie Formen verbunden sind. Diese Formen können drei-dimensional sein (wie eine Skulptur oder eine Höhle), sie können vier-dimensional sein (wie ein galoppierendes Pferd oder ein sich biegendes Protein), sie können aber auch mehr als vier Dimensionen besitzen (wie der Konfigurationsraum eines Roboters oder das Expressionsmuster eines Tumors). Die Edelsbrunner Gruppe beschäftigt sich von einem computergestützten Standpunkt aus mit den zwei miteinander verwandten Gebieten der Geometrie und Topologie. Der Computer hilft den ForscherInnen in ihren Untersuchungen und wird verwendet, um die Einsichten in Anwendungen nutzbar und für Nicht-SpezialistInnen umsetzbar zu machen. Die Gruppe nutzt einen breiten Zugang, der dennoch auch in die Tiefe geht. Darunter fällt etwa die Entwicklung neuer Mathematik, der Entwurf neuer Algorithmen und Software und die Anwendung in der Industrie und in anderen Forschungsgebieten. Themen, mit denen eine fruchtbare Zusammenarbeit möglich ist, sind etwa 3D-Druck, strukturelle Molekularbiologie, Neurowissenschaften und die Datenanalyse.
On this site:
Team
Laufende Projekte
Diskretisierung in Geometrie und Dynamik |Topologische Datenanalyse im Informationsraum
Publikationen
Lieutier A, Wintraecken M. 2023. Hausdorff and Gromov-Hausdorff stable subsets of the medial axis. Proceedings of the 55th Annual ACM Symposium on Theory of Computing. STOC: Symposium on Theory of Computing, 1768–1776. View
Boissonnat JD, Kachanovich S, Wintraecken M. 2023. Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations. SIAM Journal on Computing. 52(2), 452–486. View
Boissonnat JD, Wintraecken M. 2023. The reach of subsets of manifolds. Journal of Applied and Computational Topology. View
Kourimska H. 2023. Discrete yamabe problem for polyhedral surfaces. Discrete and Computational Geometry. View
Corbet R, Kerber M, Lesnick M, Osang GF. 2023. Computing the multicover bifiltration. Discrete and Computational Geometry. View
ReX-Link: Herbert Edelsbrunner
Karriere
seit 2009 Professor, Institute of Science and Technology Austria (ISTA)
2004 – 2012 Professor of Mathematics, Duke University, Durham, USA
1999 – 2012 Arts and Sciences Professor for Computer Science, Duke University, Durham, USA
1996 – 2013 Founder, Principal, and Director, Raindrop Geomagic
1985 – 1999 Assistant, Associate, and Full Professor, University of Illinois, Urbana-Champaign, USA
1981 – 1985 Assistant, Graz University of Technology, Austria
1982 PhD, Graz University of Technology, Austria
Ausgewählte Auszeichnungen
ISI Highly Cited Researcher
2018 Wittgenstein Award
2014 Fellow of the European Association for Theoretical Computer Science
2014 Member, Austrian Academy of Sciences (ÖAW)
2012 Corresponding Member of the Austrian Academy of Sciences
2008 Member, German Academy of Sciences Leopoldina
2006 Honorary Doctorate, Graz University of Technology
2005 Member, American Academy of Arts and Sciences
1991 Alan T. Waterman Award, National Science Foundation
Zusätzliche Informationen
View Edelsbrunner website
Mathematics at ISTA