Skip to main content

26. May 2025

Cutsets, percolation and random walks

Vienna Probability Seminar

Datum: 26. May 2025 | 17:15 – 18:15
Sprecher: Franco Severo, Université Lyon 1
Veranstaltungsort: Central Bldg / O1 / Mondi 2a (I01.O1.008)
Sprache: Englisch

Which graphs $G$ admit a percolating phase (i.e. $p_c(G)<1$)? This seemingly simple question is one of the most fundamental ones in percolation theory. A famous argument of Peierls implies that if the number of minimal cutsets of size $n$ from a vertex to infinity in the graph grows at most exponentially in $n$, then $p_c(G)<1$. Our first theorem establishes the converse of this statement. This implies, for instance, that if a (uniformly) percolating phase exists, then a "strongly percolating one also does. In a second theorem, we show that if the simple random walk on the graph is uniformly transient, then the number of minimal cutsets is bounded exponentially (and in particular $p_c<1$). Both proofs rely on a probabilistic method that uses a random set to generate a random minimal cutset whose probability of taking any given value is lower bounded exponentially on its size. Joint work with Philip Easo and Vincent Tassion.

Weitere Informationen:

Datum:
26. May 2025
17:15 – 18:15

Sprecher:
Franco Severo, Université Lyon 1

Veranstaltungsort:
Central Bldg / O1 / Mondi 2a (I01.O1.008)

Sprache:
Englisch

Ansprechpartner:

Oosthuizen-Noczil Birgit

Email:
boosthui@ist.ac.at

Teilen

facebook share icon
twitter share icon



sidebar arrow up
Nach Oben