Skip to main content

Freunberger Group

Materials Electrochemistry

Life uses electron transfer reactions to, e.g., store or retrieve energy and to produce useful chemicals and materials. The Freunberger group works on electrochemical materials sciences with broadly similar goals.

The group’s primary research interest lies in the fundamental science of electron and ion conducting and redox active materials (inorganic, organic and polymeric) as well as their mutual interactions in the working environment of electrochemical devices, particularly, energy storage devices such as rechargeable batteries. The results of this fundamental research find use in clean, efficient and sustainable energy sources. The foundations of the group’s research are (i) the synthesis of new conducting and redox active materials and a fundamental understanding of charge-carrier transport and electrochemical reactions, (ii) advanced physico‐chemical and spectroscopic investigations to understand the mutual behavior of the materials in their working environment as well as surface and interface processes, and (iii) the application in the electrochemical device that is a complex electrochemical reactor.

On this site:


Current Projects

Oxygen redox chemistry and singlet oxygen | Sulphur electrochemistry | Organic electrode materials | Non-aqueous electrolytes and Interphases | Organic mixed conductors | Electrosynthesis | Operando spectroscopy


Cao D, Shen X, Wang A, Yu F, Wu Y, Shi S, Freunberger SA, Chen Y. 2022. Threshold potentials for fast kinetics during mediated redox catalysis of insulators in Li–O2 and Li–S batteries. Nature Catalysis. 5, 193–201. View

Maffre M, Bouchal R, Freunberger SA, Lindahl N, Johansson P, Favier F, Fontaine O, Bélanger D. 2021. Investigation of electrochemical and chemical processes occurring at positive potentials in “Water-in-Salt” electrolytes. Journal of The Electrochemical Society. 168(5), 050550. View

Prehal C, Samojlov A, Nachtnebel M, Lovicar L, Kriechbaum M, Amenitsch H, Freunberger SA. 2021. In situ small-angle X-ray scattering reveals solution phase discharge of Li–O2 batteries with weakly solvating electrolytes. Proceedings of the National Academy of Sciences. 118(14), e2021893118. View

Petit YK, Mourad E, Prehal C, Leypold C, Windischbacher A, Mijailovic D, Slugovc C, Borisov SM, Zojer E, Brutti S, Fontaine O, Freunberger SA. 2021. Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nature Chemistry. 13(5), 465–471. View

Manzoor Bhat ZM, Thimmappa R, Dargily NC, Raafik A, Kottaichamy AR, Devendrachari MC, Itagi M, Makri Nimbegondi Kotresh H, Freunberger SA, Ottakam Thotiyl M. 2021. Ambient condition alcohol reforming to hydrogen with electricity output. ACS Sustainable Chemistry and Engineering. 9(8), 3104–3111. View

View All Publications

ReX-Link: Stefan Freunberger


Since 2020 Assistant Professor, Institute of Science and Technology Austria (ISTA)
2012-2020 Researcher and Group leader, TU Graz, Austria
2014 Visiting Professor, University of Montpellier, France
2008-2012 Postdoc and Early career fellow, University of St Andrews, UK
2004 Visiting Ph.D. student, University of Victoria, Canada
2003-2007 Ph.D., ETH Zürich, Switzerland
1997-2002, M.Sc., TU Vienna, Austria

Selected Distinctions

2018 Tajima Prize of The International Society of Electrochemistry
2017 Elected member of the Young Academy of the Austrian Academy of Sciences
2014 ERC Starting Grant
2014 Styrian Promotion Award for Science and Research
2014 La Chaire TOTAL de la Fondation Balard “Chimie et énergies durables”
2013 Supramaniam Srinivasan Young Investigator Award of The Electrochemical Society
2012 Science Award Electrochemistry by BASF/Volkswagen Finalist
2011 EPSRC early career fellowship

Additional Information

Download CV
View group website
Physics & Beyond at ISTA

theme sidebar-arrow-up
Back to Top