Maas Group

Stochastische Analysis

Flugzeugturbulenzen, Schwankungen von Aktienkursen und die Ausbreitung von Epidemien sind nur einige Beispiele für unregelmäßige, reale Phänomene, die Zufälligkeit, Störungen oder Ungewissheit unterliegen. Der Mathematiker Jan Maas entwickelt neue Methoden, um solche zufälligen Prozesse in Natur- und Ingenieurswissenschaften zu untersuchen.

Zufällige Prozesse sind oft so unregelmäßig, dass existierende mathematische Methoden nicht ausreichen, um sie richtig zu beschreiben. Die Maas Gruppe verbindet Ideen aus der Wahrscheinlichkeitstheorie, mathematischen Analysis und Geometrie, um neue Einsichten in das komplexe Verhalten dieser Prozesse zu gewinnen. Ihre jüngste Arbeit ist inspiriert von Ideen des optimalen Transports, einem Gebiet, das aus Wirtschaft und Technik stammt und sich mit der optimalen Ressourcenallokation beschäftigt. Die Maas Gruppe verwendet diese Techniken für verschiedene Probleme, die komplexe Netzwerke, chemische Reaktionssysteme und Quantenmechanik betreffen. Ein anderer Forschungsschwerpunkt sind stochastische partielle Differentialgleichungen. Diese Gleichungen werden häufig verwendet, um hochdimensionale zufällige Systeme in Wissenschaft und Technik zu modellieren, vom Wachstum von Bakterienkolonien bis zur Wettervorhersage. Die Maas Gruppe entwickelt robuste mathematische Methoden, um diese Gleichungen zu untersuchen, was zu neuen Einsichten in die zugrunde liegenden Modelle führen sollte.


On this site:


Team


Laufende Projekte

Homogenisierung des diskreten optimalen Transports | Kurvenmaßkriterien für Markov-Prozesse | Gradientenflussstrukturen in dissipativen Quantensystemen


Publikationen

Saona Urmeneta RJ, Kondrashov F, Khudiakova K. 2022. Relation between the number of peaks and the number of reciprocal sign epistatic interactions. Bulletin of Mathematical Biology. 84(8), 74. View

Wirth M. 2022. A dual formula for the noncommutative transport distance. Journal of Statistical Physics. 187(2), 19. View

Dello Schiavo L. 2022. The Dirichlet–Ferguson diffusion on the space of probability measures over a closed Riemannian manifold. Annals of Probability. 50(2), 591–648. View

Floreani S, Redig F, Sau F. 2022. Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations. Annales de l’institut Henri Poincare (B) Probability and Statistics. 58(1), 220–247. View

Dello Schiavo L, Suzuki K. 2021. Sobolev-to-Lipschitz property on QCD – spaces and applications. Mathematische Annalen. View

Zu Allen Publikationen

ReX-Link: Jan Maas


Karriere

seit 2020 Professor, Institute of Science and Technology Austria (ISTA)
2014 – 2020 Assistant Professor, Institute of Science and Technology Austria (ISTA)
2009 – 2014 Postdoc, University of Bonn, Germany
2009 Postdoc, University of Warwick, UK
2009 PhD, Delft University of Technology, The Netherlands


Ausgewählte Auszeichnungen

2016 ERC Starting Grant
2013 – 2014 Project Leader in Collaborative Research Centre “The mathematics of emergent effects”
2009 – 2011 NWO Rubicon Fellowship


Zusätzliche Informationen

Maas Home Page
Go to Mathphys Analysis Seminar website



Nach Oben